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The development of antisense therapies to inhibit the expression
of specific genes requires the generation of oligonucleotides
(ODNs) that are physiologically stable, nontoxic, and able to
penetrate into cells, while maintaining stringent base-pairing
fidelity for unique DNA sequences.1 Modifications to the bases,
deoxyribose ring, and phosphate backbone have been generated
to address some of these issues.2 Among the potential structural
changes, alterations of the phosphate backbone have received the
most attention and have had the greatest impact on antisense
technology. In fact, backbones made up of phosphorothioates
have been tested in vivo as antisense reagents because they are
DNase resistant and the resulting RNA-DNA complex is a
substrate for RNase H.3 However, phosphorothioate-based ODNs
are complex diastereomeric mixtures, cause toxicity by poorly
understood mechanisms, and most importantly, base-pair with
reduced stability.4

Oligomers with 5-(3-aminopropyn-1-yl)-2′-deoxyuridine sub-
stitutions (Figure 1,X) were synthesized5 in order to enhance
the physiological stability of the oligomer, enhance duplex
formation, and maintain Watson-Crick recognition. The amino
group, which is ionized at physiological pH,6 is capable of forming
a salt bridge with the nonbridging major groove oxygen on the
phosphate of the 5′-nucleotide (Figure 2a).7 Such a salt bridge
structure should significantly increase the stability of the duplex
by lowering the electrostatic repulsion between the anionic strands.

In addition, the 3-aminopropyn-1-yl side chain has been proposed
to stabilize DNA due to enhanced base stacking and hydrophobic
interactions as has been observed with neutral 5-propyne-
substituted pyrimidines.8

UV melting studies on oligomers with one or moreX
substitutions confirm that there is a very significant increase in
TM (Table 1). At 100 mM NaCl, a single substitution (ODN-2)
results in a 4.5°C increase, whereas an oligomer with fourX
residues (ODN-3) shows an11.9 °C increase(Table 1). This
increase exceeds that observed with the neutral propyne side
chain8 (Figure 1,P) by 1 °C per residue in the same sequence
(ODN-4 and -5). The introduction of flexible 3-aminopropyl side
chains,Y (Figure 1), (ODN-6) decreases theTM at 100 mM NaCl
by 2.4°C, and the presence of neutral 3-hydroxypropyl append-
ages,Z, (ODN-7) results in a duplex structure that is 7°C less
stable (Table 1). These data with the flexibleY andZ (Figure
1) side chains are similar to those reported for 5-butane-substituted
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Figure 1. Structures of base modifications.

Figure 2. Minimized structures of ODN withX (6) andY (14b) side
chain modifications (see Figure 1 for structures) in ad(purine)3-
d(pyrimidine)3 sequence: purple, purine strand (5′-3′ top to bottom);
yellow, pyrimidine strand (3′-5′ top to bottom); red, alkyl or alkyne
side chain; blue, terminal amino group; green (Figure 2a), nonbridging
oxygen of the 5′-phosphate; orange (Figure 2b), O6-position on G in purine
strand.
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nucleotides and indicate that any stabilizing electrostatic effect
of the tethered cationic amine inY is countered by the destabiliz-
ing steric effect of the aliphatic side chain.9 In previous studies,
5-(ω-N-aminoalkyl)carbamoyl-2′-deoxyuridine substitutions have
caused position-dependent increases inTM’s, although the increase
is e1 °C per modification at 100 mM salt.10 Clearly the location
of the cationic charge determines the magnitude of the stabiliza-
tion. The 4°C increase perX residue compares to∼3° increase
in TM when an oligomer with a neutral Rp-methylphosphonate
residue is paired with its complementary natural oligodeoxy-
nucleotide.11 The Sp-isomer binds inefficiently to its comple-
ment.12

If the stabilization of duplex DNA byX substitution(s) has an
electrostatic component, then theTM’s of the oligomers should
not be as sensitive as unmodified ODNs to ionic strength. The
relationship between salt concentration vsTM for the different
ODNs is shown in Table 1. As anticipated, the∆TM over the
range of NaCl concentration is smaller for ODN-3 (7.8°C) vs
unmodified duplex ODN-1 (13.6°C). Previous work showed that
an ODN fully substituted withY side chains is completely
insensitive to salt concentration.9a

To confirm that the fidelity of base pairing was not compro-
mised by theX side chain, the effect on duplex stability of the

three potential mismatches opposite the modified residue was
measured. The studies (Table 1) show that theTM drops by 10-
14 °C upon the introduction of a mismatch oppositeX, which is
in the range of that observed for mismatches involving thymine
residues.13

We have previously used the DNA methylation pattern induced
by methanediazonium ion (generated fromN-methyl-N-ni-
trosourea) to probe the location of cationic side chains.14 Using
this approach, which is based on the repulsion of the positively
charged methylating agent by the tethered ammonium ion, it was
demonstrated that flexibleY substitutions regioselectively protect
DNA from methylation toward the 3′-direction, a result that is
consistent with molecular modeling studies (Figure 2b).14b A
similar methylation analysis was done with theX-substituted
ODNs. No significant quantitative or qualitative effect on DNA
methylation at the N7-G position was observed with ODN-2;
however, all Gs in ODN-3 with fourX side chains are methylated
less efficiently than those in unmodified ODN-1 or ODN-2, which
has a single modified side chain (data not shown). The general
decrease in methylation is similar to that which is observed when
the salt concentration is increased15 and is probably due to a
reduction in the electrostatic attraction between the anionic ODNs
and the positively charged methanediazonium ion. Therefore, the
methylation protection data is consistent with the locations of the
rigid X (Figure 2a) and flexibleY (Figure 2b) side chains.

To demonstrate the potential of theX-modified nucleotides to
stabilize RNA-DNA complexes, a chimeric 14mer was synthe-
sized, and the stability of duplexes with natural DNA (ODN-11)
and DNA containing four of theX substitutions opposite the RNA
bases (ODN-12) was measured. TheTM data show that theX
modification increases the melting of ODN-12 by 10.2°C in
comparison to unmodified ODN-11(Table 1).

In conclusion, we have demonstrated that the introduction of
rigid 3-aminopropyn-1-yl side chains at the 5-position of deoxy-
uridine results in ODNs with a marked increase in duplex DNA
and RNA-DNA stability but with no decrease in base-pairing
fidelity. These modified oligomers should be considered as
potential antisense molecules and useful reagents to study the
effect of charge neutralization on DNA structure.16 The possibility
that ODNs withX side chains will be less susceptible to nuclease
degradation and more efficient at penetrating into cells as a result
of the internal neutralization of backbone charge via salt bridging
is under investigation.
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Table 1. Thermal Stability of ODNs

TM (°C) at [NaCl] (mM)a

ODN duplexb 50 100 200 500

1 5′-TGTATAGGGAGAGAAAG-3′ 40.7 44.0 50.0 54.3
3′-TCCCTCTCTTTC-5′

2 5′-TGTATAGGGAGAGAAAG-3′ 44.5 48.5 52.5 56.0
3′-TCCCTCXCXTTC-5′

3 5′-TGTATAGGGAGAGAAAG-3′ 52.5 55.9 57.5 60.3
3′-TCCCXCXCXTXC-5′

4 5′-TGTATAGGGAGAGAAAG-3′ n.d.c 47.2 n.d. n.d.
3′-TCCCTCPCTTTC-5′

5 5′-TGTATAGGGAGAGAAAG-3′ n.d. 52.1 n.d. n.d.
3′-TCCCPCPCPTPC-5′

6 5′-TGTATAGGGAGAGAAAG-3′ 39.0 41.6 44.2 46.2
3′-TCCCYCYCYTYC-5′

7 5′-TGTATAGGGAGAGAAAG-3′ 34.7 37.0 40.1 45.3
3′-TCCCZCZCZTZC-5′

8 5′-TGTATAGGGAGTGAAAG-3′ 31.8 n.d. n.d. n.d.
3′-TCCCTCXCTTTC-5′

9 5′-TGTATAGGGAGGGAAAG-3′ 34.8 n.d. n.d. n.d.
3′-TCCCTCXCTTTC-5′

10 5′-TGTATAGGGAGCGAAAG-3′ 30.9 n.d. n.d. n.d.
3′-TCCCTCXCTTTC-5′

11 5′-AGCGGAAAAGCACC-3′ n.d. 58.8 n.d. n.d.
3′-TCGCCTTTTCGTCC-5′

12 5′-AGCGGAAAAGCACC-3′ n.d. 69.0 n.d. n.d.
3′-TCGCCXXXX CGTCC-5′

a Temperature ramped from 15 to 80°C at a rate of 1°/min and
UV-monitored at 260 and 280 nm. ThermalTM’s were calculated using
the first derivative method. Conditions: 2.5µM duplex, 10 mM sodium
phosphate buffer (pH 7.0), 0.1 mM EDTA, and NaCl as indicated.b See
Figure 1 for structures ofX, Y, andZ. c Not determined.
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